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ABSTRACT 
Motivation: As new processors become available, the Single-
Instruction Multiple-Data Smith-Waterman implementations need to 
be adapted to the processors instruction set to get maximum 
performance.  One recent processor, the Cell Broadband Engine 
has eight independent vector processors.   To take advantage of the 
Cell’s vector engines, the implementation needs to take into account 
the limited resources of the vector engine and the limits of the 
instruction set. 
Results: The adapted Smith-Waterman implementation running on 
a single 3.2 GHz Cell Broadband Engine achieved speeds of >16 
billion cell update per second with the ability to handle sequences of 
32K residues. 
Availability: http://farrar.michael.googlepages.com/striped.tgz 
Contact: farrar.michael@gmail.com 

1 INTRODUCTION  
The Smith–Waterman (Smith and Waterman, 1981) algorithm is 
one of the slowest sequence search algorithms but the only one 
guaranteed to return the optimal score. As the size of the 
GenBank/EMBL/DDBJ double every 15 months (Benson et al., 
2000), faster implementations of the Smith–Waterman algorithm 
have been developed using Single-Instruction Multiple-Data 
(SIMD) microprocessors to speed the calculations. A SIMD 
instruction is able to perform the same operation on multiple pieces 
of data in parallel. 

The Cell Broadband Engine (B.E.) is a heterogeneous, multi-
core processor optimized for compute-intensive workloads (IBM 
Handbook, 2007).  The two main processing components of the 
Cell B.E. are the 64-bit PowerPC core (PPE) and eight specialized 
SIMD co-processors called Synergistic Processing Elements 
(SPE). 

The main processing engine of the SPE is the Synergistic 
Processing Unit (SPU).  The SPU is a SIMD processor with 128 
128-bit registers and 256KB of memory referred to as Local Store 
(LS).  The LS is used to hold both the instructions and data of the 
program to execute.  Since the SPU cannot directly access main 
memory, DMA transfers are used to copy data to and from main 
memory and the LS.  The DMA transfers are entirely controlled by 
software and are independent of the programs execution. 

Three of the more common SIMD Smith–Waterman 
implementations are the Wozniak (1997), the Rognes and Seeberg 
(2000) and the Striped (Farrar, 2007).  The implementations differ 
in how the data is accessed for the calculations.  The Wozniak 
algorithm accesses the data values parallel to the minor diagonal.  
The Rognes implementation accesses the data parallel to the query 

  
 

sequence.  The Striped algorithm, like the Rognes, accesses the 
data parallel to the query sequence, but in a striped pattern. 

One of the first Smith–Waterman implementations running on 
the Cell B.E. was a port of SSEARCH34 (Pearson and Lipman, 
1988).  Erik Lindhal’s Altivec SIMD version, a Wozniak 
implementation, was the starting point for the Cell B.E. port 
(Sachdeva et al., 2007).  The Cell B.E. port uses half word values, 
16 bits, when doing the calculations.  Half words are the smallest 
elements supported by the Cell B.E. instruction set.  To generate 
the weight vector, a Position Specific Scoring Matrix (Gribskov et 
al., 1987) (PSSM) is created based on the query sequence and the 
scoring matrix.  The PSSM, H and F buffers requires 50 bytes per 
query residue.  With the code and data buffers the largest sequence 
that can be processed with this implementation are 2,000 residues 
in length. 

This paper presents the Striped Smith–Waterman 
implementation optimized for the Cell B.E. This optimized 
implementation improves search speeds 3 times over the Sachdeva 
port, achieving speeds >16 billion cell updates per second 
(GCUPS) per socket.  In addition to improved throughput, this 
implementation is able to handle sequences of 32K residues. 

2 METHODS 

2.1 Smith–Waterman 
The algorithm used to compute the optimal local alignment is the 
Smith–Waterman (Smith and Waterman, 1981) with the Gotoh 
(1982) improvements for handling multiple sized gap penalties.  
The two sequences to be compared, the query sequence and the 
database sequence, are defined as Q and D with lengths m and n 
respectively.  The individual residues for Q and D are q1, q2 … qm 
and d1, d2 … dn.  A scoring matrix W(qi, dj) is defined for all 
residue pairs. The penalties for starting and continuing a gap are 
defined as Ginit and Gext.  The Smith–Waterman equation is defined 
in (1), (2) and (3).  The values for Hi,j, Ei,j and Fi,j are defined as 0 
when i < 1 or j < 1.  
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2.2 Striped Smith–Waterman 
The Striped Smith–Waterman (Farrar, 2007) is divided into three 
major parts.  The first part is the generation of the scoring profile 
used in the calculations.  The next part is the actual calculations 
used in computing the local alignment score.  Finally the Lazy F 
loop, used to correct any errors from the initial calculations. 

The layout used by the query profile is a striped access parallel 
to the query sequence.  The query is divided into p equal length 
segments S, where p is equal to the number of elements being 
processed in the SIMD register.  The length of each segment t 
is ( ) ppm 1−+ .  If the query is not long enough to completely 
fill all the segments, mpt >×  then the segments are padded with 

null entries that have a weight of zero.  Letting be the jj
kS th entry 

in the kth segment S where  and then vector tj ≤≤1 pk ≤≤1

i
H  is defined as i

p
ii SSS ,,, K21 . 

The calculation of a match score for  is defined 

as .   Using vectors, the match calculation for 
jiH ,

( jiji dqWH ,, +−− 11 )

i
H  is defined as 

ii
WH +

−1
.  When , vector 1=i

0
H  is 

defined as t
p

tt SSS 1210 −,,,, K  to carry the values of the last 

vector to the first vector.  The initial value for 
0

F  is set to all 

zeros.  Any errors are corrected in the Lazy F loop.  
For most cells, F remains at zero and does not contribute to the 

value of H.  Only when H is greater than Ginit + Gext will F start to 
influence the value of H.  The Lazy F loop is executed while any 
element of initii

GHF −>
−1

.  If  then 1=i
0

F  is defined 

as 
t

F  shifted right by one element.  Shifting the contents of 

t
F  moves the values in the vector to the next column.  H is 

corrected by ( )
iii

FHH ,max= .  The penalty Gext is 

subtracted from the vector F and the loop is repeated.  If the loop 
has iterated t times, the contents of vector F are again shifted one 
element to the right and the loop continues at the beginning with 

1
H . 

2.3 Implementation 
When porting the Smith–Waterman (Smith and Waterman, 1981) 
algorithm to the Cell B.E. special attention needs to be paid to the 
limitations of the SPU. The small size of the LS, 256 KB, will 
impact the size of the two sequences compared.  With no 
instructions supporting saturated math, a solution is needed that 
will not greatly impact performance of the inner loop.  Finally, 
with only support for 16 and 32 bit integer arithmetic, a solution 

needs to be found to increase throughput of the Smith–Waterman 
calculation. 

The Striped (Farrar, 2007) implementation of the Smith–
Waterman algorithm was used when optimizing for the Cell B.E.  
This is the fastest of the SIMD implementations and can easily be 
adapted to the Cell B.E. instruction set.  With some modifications, 
the issues concerning space, saturated math and throughput can all 
be addressed. 

The Striped implementation relies on two buffers for storing the 
E and H values and lookup table generated from the scoring matrix 
W matching Q for each possible residue.  This table greatly 
resembles a PSSM (Gribskov et al., 1987).  This PSSM is used to 
load the weights for a vector with a single instruction.  The size of 
the PSSM is m×r×s where r is the number of columns in the PSSM 
and s is the size of the vector element.  For each residue in Q, 50 
bytes are needed to store the PSSM. 

To free up more space in the LS, the W vector is calculated for 
each iteration..  The vector W is generated using the shuffle 
instruction (IBM C/C++, 2007).  The shuffle instruction reorders 
the data of two source registers into a third target register based on 
a shuffle mask.  Using the query sequence as the shuffle mask and 
the scoring matrix as the two source vectors, the W vector is 
generated with one shuffle instruction. 

This approach greatly increases the available memory for the H 
and E arrays.  Now each residue in Q needs only six bytes, two 
bytes for the query residue and two bytes each for the H and E 
values.  This implementation divides the available space equally 
between the query sequence and database sequence resulting in 
ability to handle sequences of 32K residues.  

The lack of support in the SPUs for saturated math needs to be 
worked around.  Saturated math keeps the values of the vector 
within the range of the specified type.  If an over-flow condition 
occurs, the value is clipped to the ceiling of the specified type, i.e. 
32,767 for a signed short.  If an under-flow condition occurs, the 
value is clipped to the floor of the specified type, i.e. -32,768 for a 
signed short.  Sachdeva et al., (2007) replaced the saturated math 
instruction with seven instructions.  The saturated math operations 
easily dominated the time used to calculate a cell’s values.  

An additional way of implementing saturated math is to 
artificially limit the range an all vector calculations preventing any 
one calculation for under-flowing or over-flowing.  Then use the 
maximum operator to keep the values within the artificial limits.  
This faster method is used in this implementation. 

The inputs for a cell’s calculations are limited to Ginit, Gext and 
W.  By biasing the initial E, F and H values, these calculations 
cannot under-flow and maximum operators can take the place of 
the expensive saturated math operations.  The initial bias is defined 
as ( )WGGb extinit ,,,min −−= 0 .  The values for Hi,j, Ei,j and Fi,j 

are defined as b when i < 1 or j < 1.  Since the Smith–Waterman 
calculations now have a floor of b, the equations (1), (2) and (3) 
become (4), (5) and (6) respectively. 
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Saturated addition is not needed in the Smith–Waterman 
calculations.  If the H value saturates, the calculated scores are 
incorrect and need to be recalculated with at a higher precision to 
prevent the over-flow.  Therefore, the saturated addition can be 
replaced with unsaturated addition and a test for the over-flow 
condition.  The over-flow test is a simple as testing Hi,j for a value 
greater than the ceiling.  The ceiling c is defined 
as , where X is the maximum value for the 
specified vector type, i.e. 65,535 for an unsigned short.  If any 
element of

( WX ,max 0− )

cH
i
≥ , where , the next column has the 

potential to over-flow and the calculations need to be restarted 
either with a scalar or a higher precision implementation to prevent 
the over-flow.  To improve calculation times, this test is moved out 
of the inner loop and performed once after a column’s calculations 
by comparing the maximum score vector to the ceiling.  If any 
value in the maximum score vector is greater than the ceiling, the 
calculations are rerun with a higher precision. 

ti ≤≤1

Another modification has been made to the Lazy F loop.  This 
loop has a check to see if the calculations have reached the last 
vector, and need to rollover.  If so, the F values are shifted right 
and the loop is restarted with the first H element.  This check has 
been moved out of the Lazy F loop to the end of the loop.  This 
reduced the number of cycles per iteration by 1/3.  For a 
moderately sized query sequence with a length of 500 residues, the 
number of rollovers is < 1%.  For those few cases of rollover, the 
loop is repeated at the cost of a branch miss-prediction penalty. 

The SPU’s native instruction set support arithmetic operations 
on vectors divided into 16 bit and 32 bit elements.  This limits the 
number of cells processed per vector register to eight.  The SSE2 
and Altivec instructions also support 8 bit elements in the vector 
registers.  This allows 16 cells to be processed per vector register, 
effectively doubling the number of cells calculated per loop 
iteration.  The drawback to using 8 bit elements is the range of 
scores possible to calculate.  An 8 bit element is able to hold a 
score between 0-255.  If the score is greater than 255, the 
calculation needs to be run using a higher precision. 

To increase the throughput of this implementation, the scores 
are packed in 8 bits.  The W vector is arranged with the weights 
also in 8 bit elements.  The ceiling is calculated for an 8 bit value 
by  to prevent any over-flows from 8 bits.  The 
calculations still use the 16-bit arithmetic instructions, but all 
comparisons will be using 8-bit instructions.  The comparison casts 
the vectors to unsigned characters enabling the compiler to 
generate the correct instruction for the compare.  After each 
column is calculated, if 

( W,max 0255 − )

cH
i
≥ where the calculations 

will continue but with an increased range of 16-bits.  Using this 
method, each loop iteration will process 16 cells. 

ti ≤≤1

3 RESULTS 
A multi-threaded test framework was developed to run the Striped 
Smith-Waterman (Farrar, 2007) implementations on both an Intel 
and Cell B.E. processors. All the Smith-Waterman 
implementations were written in C using intrinsic functions for that 
processor.  The program for the Intel processor was compiled 
using GCC 4.1.1 and for the Cell B.E. the XLC 8.2 compiler was 
used. By using intrinsic functions instead of assembler, the 
compiler was responsible for optimizations, such as register usage, 
instruction selection and instruction scheduling. 

The programs were tested on three computers.  The first was a 
Dell blade with two 1.6 GHz Xeon 5130 processors (a total of 
eight cores) with 4 GB of RAM.  The next computer was an IBM 
QS20 blade with two 3.2 GHz Cell B.E. processors (a total of 16 
SPEs) and 1 GB of RAM.  The last computer was Sony’s 
PlayStation 3 (PS3) with a single 3.2 GHz Cell B.E. processor (a 
total of 6 SPEs) and 256 MB of RAM. Additionally, the PS3 has a 
hypervisor running which controls access to all hardware.   

All queries were run against Swiss-Prot release 45 comprising 
59,631,787 amino acids in 163,235 sequence entries.  To test the 
different Smith-Waterman implementations, 11 query sequences 
were used ranging is size from 143 to 567 amino acids.  These 
sequences were used to test other algorithms including BLAST 2 
(Altschul et al., 1997), SWMMX (Rognes and Seeberg, 2000) and 
SWSSE2 (Farrar, 2007).  Two different scoring matrices were used 
Blosum50 and Blosum62 (Henikoff and Henikoff, 1992).  With 
higher scores, the Lazy F loop is executed more often than with 
lower scores. 

To measure the speed of the Smith-Waterman implementations 
on the different processors and not the peripherals, the test frame 
work loads the entire sequence database into memory.  For this 
reason, an older and smaller version of Swiss-Prot was chosen that 
would fit into the available memory of the smallest machine.  Once 

Wozniak Striped  
QS20 PS3 QS20 Intel 

Sequence Time Speed Time Speed Time Speed Time Speed
P00762 21.2 0.7 9.1 1.6 9.1 1.6 7.7 1.9
P01008 39.6 0.7 14.1 2.0 14.1 2.0 11.5 2.4
P01111 16.4 0.7 7.7 1.5 7.7 1.5 6.7 1.7
P02232 12.4 0.7 6.5 1.3 6.5 1.3 5.8 1.5
P03435 48.4 0.7 16.8 2.0 16.7 2.0 13.8 2.5
P05013 16.4 0.7 7.6 1.5 7.5 1.5 6.5 1.7
P07327 32.1 0.7 12.2 1.8 12.2 1.8 10.1 2.2
P10318 31.4 0.7 11.8 1.8 11.7 1.8 10.7 2.0
P10635 43.0 0.7 15.3 1.9 15.2 1.9 12.6 2.4
P14942 19.2 0.7 8.4 1.6 8.4 1.6 7.2 1.8
P25705 47.7 0.7 16.5 2.0 16.5 2.0 13.9 2.4
Table 1.  Single threaded scan times for the using 
the Blosum50 scoring matrix with a penalty of 10-
2k.  The scan time is in seconds and speed is in 
billion cell updates per second. 
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loaded in memory, the database is divided into equal size blocks 
for each thread to process.  With each block independent of the 
other, no thread synchronization is necessary during the 
calculations.  After the database has been loaded and each thread 
has initialized any necessary data, the timer is started.  When all 
the threads have completed, the timer is stopped.  The GCUPS are 
calculated by the multiplying the length of the query sequence by 
the length of the database divided by the elapsed time. 

For the Cell B.E. processors, the elapsed time includes the time 
to transfer the sequences from main memory to the LS.  To 
improve transfer efficiency, the database sequences in main 
memory and in the LS are aligned within the cache line and data 
structures are initialized during the transfer of the sequence to 
improve.  Since the transfers take < 1% of the execution time, 
more elaborate transfer techniques such as double buffering were 
not implemented (IBM Tutorial, 2007). 

For a performance baseline, the Sachdeva et al., (2007) 
implementation was modified to use the test frame work.  Since all 

the test sequences are less than 600 residues, this implementation 
was modified to handle only query sequences less than 600 
residues.  This enabled more space to be allocated to the H and F 
buffers, increasing the maximum database sequence size from 
2,000 residues to 6,500 residues.  All sequences in the Swiss-Prot 
database longer the maximum allowed length, were truncated.  
This reduced the number of residues for the Wozniak tests by 
11,840. 

Wozniak Striped 
QS20 PS3 QS20 Intel 

 

8 Threads 16 Threads 6 Threads 8 Threads 16 Threads 4 Threads 8 Threads 
Sequence Time Speed Time Speed Time Speed Time Speed Time Speed Time Speed Time Speed 
P00762 2.7 5.5 1.3 11 1.5 9.6 1.1 12.9 0.6 25.6 2.2 6.6 1.1 13.8 
P01008 5.0 5.6 2.5 11.1 2.4 11.7 1.8 15.6 0.9 31.2 3.0 9.2 1.6 17.6 
P01111 2.1 5.5 1.0 10.9 1.3 8.7 1.0 11.5 0.5 22.5 1.7 6.5 0.9 12.4 
P02232 1.6 5.5 0.8 10.9 1.1 7.8 0.8 10.4 0.4 20.7 1.5 5.7 0.8 11.2 
P03435 6.1 5.6 3.1 11.1 2.8 12.0 2.1 15.9 1.1 31.4 3.5 9.6 1.8 18.6 
P05013 2.1 5.5 1.0 10.9 1.3 8.9 1.0 11.9 0.5 23.7 1.6 6.8 0.9 12.9 
P07327 4.0 5.5 2.0 11 2.0 10.9 1.5 14.5 0.8 28.6 2.6 8.7 1.3 16.8 
P10318 3.9 5.5 2.0 10.9 2.0 10.9 1.5 14.6 0.7 28.9 2.7 8.1 1.3 16.7 
P10635 5.4 5.5 2.7 10.9 2.6 11.4 1.9 15.3 1.0 29.9 3.3 9.1 1.8 16.9 
P14942 2.4 5.5 1.2 11 1.4 9.4 1.1 12.5 0.5 24.9 1.8 7.2 1.0 13.2 
P25705 6.0 5.5 3.0 11 2.8 11.9 2.1 15.7 1.1 30.9 3.6 9.2 1.8 18.2 
Table 2.  Multi threaded scan times using Blosum50 scoring matrix with a penalty of 10-2k.  The scan time is in 
seconds and speed is in billion cell updates per second. 

The first test runs the eleven searches against the database using 
a single thread, Table 1.  The scoring matrix used was Blosum50 
with a gap penalty of 10-2k.  Comparing the times of the PS3 to 
the QS20 would indicate that the hypervisor has a minimal impact 
on the execution of the calculations.  By increasing the number of 
cells processed per SIMD register and decreasing the number of 
instructions in the inner loop, the Striped implementation executed 
2-3 times faster than the Wozniak.  Another point of interest is the 
X86 times compared to the Cell B.E.  Even though the Intel 
processor has a much lower clock speed, 1.6 GHz vs. 3.2 GHz, its 

Wozniak Striped 
QS20 PS3 QS20 Intel 

 

8 Threads 16 Threads 6 Threads 8 Threads 16 Threads 4 Threads 8 Threads 
Sequence Time Speed Time Speed Time Speed Time Speed Time Speed Time Speed Time Speed 
P00762 2.7 5.5 1.3 11 1.4 10.4 1.1 13.9 0.5 27.6 1.8 7.9 0.9 17.2 
P01008 5.0 5.6 2.5 11.1 2.2 12.4 1.7 16.6 0.8 33.1 2.6 10.5 1.3 20.5 
P01111 2.1 5.5 1.0 10.9 1.2 9.6 0.9 12.7 0.5 24.9 1.3 8.5 0.7 16.3 
P02232 1.6 5.5 0.8 10.9 1.0 8.7 0.7 11.6 0.4 23.2 1.1 7.6 0.6 15.3 
P03435 6.1 5.6 3.1 11.1 2.7 12.6 2.0 16.7 1.0 33.0 3.1 11.0 1.6 20.9 
P05013 2.1 5.5 1.0 10.9 1.2 9.7 0.9 12.9 0.4 25.8 1.3 8.8 0.7 16.7 
P07327 4.0 5.5 2.0 11 1.9 11.6 1.4 15.5 0.7 30.7 2.2 10.3 1.1 20.1 
P10318 3.9 5.5 2.0 10.9 1.9 11.6 1.4 15.5 0.7 30.7 2.3 9.3 1.1 19.8 
P10635 5.4 5.5 2.7 10.9 2.4 12.1 1.8 16.2 0.9 31.8 2.9 10.1 1.5 19.2 
P14942 2.4 5.5 1.2 10.9 1.3 10.3 1.0 13.7 0.5 27.3 1.4 9.3 0.8 16.2 
P25705 6.0 5.5 3.0 11 2.6 12.5 2.0 16.7 1.0 32.7 3.1 10.7 1.6 20.8 
Table 3.  Multi threaded scan times using Blosum62 scoring matrix with a penalty of 10-2k.  The scan time is in 
seconds and speed is in billion cell updates per second. 
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calculation times were 20% faster.  This can be attributed to 
differences in the SIMD instructions.  Intel’s SSE2 instructions 
support saturated math and a maximum instruction.  This leads to 
the inner loop of the Intel having eight fewer SIMD instructions 
than the Cell B.E. 

The final two searches used the Blosum50 and Blosum62 
scoring matrices Table 2 and Table 3 respectively, with a gap 
penalty of 10-2k to test the full capability of the different 
configurations.  The searches were run using all the cores of a 
single socket and dual sockets configurations.  The PS3 using six 
SPEs peaked at speeds >12 GCUPS.  The QS20 using a single Cell 
B.E. and two Cell B.E. reached speeds >16 and >33 GCUPS 
respectively.  Finally the Intel using four and then eight cores 
reached speeds >11 and >20 GCUPS respectively. 

4 DISCUSSION 
Further optimizations of the Striped Smith-Waterman 
implementation on the Cell B.E. processors are still possible.  
Unrolling the inner loop would allow the compiler more freedom 
in scheduling instruction thus reducing the number of data 
dependency stalls.  Another optimization would be to remove the 
updating of E in the Lazy F loop when an insert cannot 
immediately follow a delete (Durbin et al., 1998).  Attention must 
be taken as to not introduce additional branches miss-prediction 
penalties which could easily out strip any performance gains. 

Other bioinformatics applications which make use of the 
dynamic programming algorithm could benefit from Cell B.E. 
eight SPEs such as ClustalW (Thompson et al., 1994), SSEARCH 
(Pearson and Lipman, 1988) and HMMER (Eddy, 1999).  Each of 
these programs would pose unique problems when ported to the 
Cell B.E.  Additionally, the slow speed of the PPC core will 
require more routines be ported to the SPU or offloaded to a faster 
processor. 

Additionally, the divide and conquer algorithms used in 
bioinformatics could also benefit from the multiple SPUs of the 
Cell B.E.  One example would be the Myers and Miller (1988) 
linear space alignment algorithm.  As the problem is sub-divided, 
keep assigning an SPU a portion of the work until all available 
resources are used.  A multi-threaded implementation of this 
algorithm has improved the progressive alignment times of 
ClustalW (Chaichoompu el at., 2006). 
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