
Sequence Analysis

Optimizing Smith-Waterman for the Cell Broadband Engine
Michael S. Farrar

ABSTRACT
Motivation: As new processors become available, the Single-
Instruction Multiple-Data Smith-Waterman implementations need to
be adapted to the processors instruction set to get maximum
performance. One recent processor, the Cell Broadband Engine
has eight independent vector processors. To take advantage of the
Cell’s vector engines, the implementation needs to take into account
the limited resources of the vector engine and the limits of the
instruction set.
Results: The adapted Smith-Waterman implementation running on
a single 3.2 GHz Cell Broadband Engine achieved speeds of >16
billion cell update per second with the ability to handle sequences of
32K residues.
Availability: http://farrar.michael.googlepages.com/striped.tgz
Contact: farrar.michael@gmail.com

1 INTRODUCTION
The Smith–Waterman (Smith and Waterman, 1981) algorithm is
one of the slowest sequence search algorithms but the only one
guaranteed to return the optimal score. As the size of the
GenBank/EMBL/DDBJ double every 15 months (Benson et al.,
2000), faster implementations of the Smith–Waterman algorithm
have been developed using Single-Instruction Multiple-Data
(SIMD) microprocessors to speed the calculations. A SIMD
instruction is able to perform the same operation on multiple pieces
of data in parallel.

The Cell Broadband Engine (B.E.) is a heterogeneous, multi-
core processor optimized for compute-intensive workloads (IBM
Handbook, 2007). The two main processing components of the
Cell B.E. are the 64-bit PowerPC core (PPE) and eight specialized
SIMD co-processors called Synergistic Processing Elements
(SPE).

The main processing engine of the SPE is the Synergistic
Processing Unit (SPU). The SPU is a SIMD processor with 128
128-bit registers and 256KB of memory referred to as Local Store
(LS). The LS is used to hold both the instructions and data of the
program to execute. Since the SPU cannot directly access main
memory, DMA transfers are used to copy data to and from main
memory and the LS. The DMA transfers are entirely controlled by
software and are independent of the programs execution.

Three of the more common SIMD Smith–Waterman
implementations are the Wozniak (1997), the Rognes and Seeberg
(2000) and the Striped (Farrar, 2007). The implementations differ
in how the data is accessed for the calculations. The Wozniak
algorithm accesses the data values parallel to the minor diagonal.
The Rognes implementation accesses the data parallel to the query

sequence. The Striped algorithm, like the Rognes, accesses the
data parallel to the query sequence, but in a striped pattern.

One of the first Smith–Waterman implementations running on
the Cell B.E. was a port of SSEARCH34 (Pearson and Lipman,
1988). Erik Lindhal’s Altivec SIMD version, a Wozniak
implementation, was the starting point for the Cell B.E. port
(Sachdeva et al., 2007). The Cell B.E. port uses half word values,
16 bits, when doing the calculations. Half words are the smallest
elements supported by the Cell B.E. instruction set. To generate
the weight vector, a Position Specific Scoring Matrix (Gribskov et
al., 1987) (PSSM) is created based on the query sequence and the
scoring matrix. The PSSM, H and F buffers requires 50 bytes per
query residue. With the code and data buffers the largest sequence
that can be processed with this implementation are 2,000 residues
in length.

This paper presents the Striped Smith–Waterman
implementation optimized for the Cell B.E. This optimized
implementation improves search speeds 3 times over the Sachdeva
port, achieving speeds >16 billion cell updates per second
(GCUPS) per socket. In addition to improved throughput, this
implementation is able to handle sequences of 32K residues.

2 METHODS

2.1 Smith–Waterman
The algorithm used to compute the optimal local alignment is the
Smith–Waterman (Smith and Waterman, 1981) with the Gotoh
(1982) improvements for handling multiple sized gap penalties.
The two sequences to be compared, the query sequence and the
database sequence, are defined as Q and D with lengths m and n
respectively. The individual residues for Q and D are q1, q2 … qm
and d1, d2 … dn. A scoring matrix W(qi, dj) is defined for all
residue pairs. The penalties for starting and continuing a gap are
defined as Ginit and Gext. The Smith–Waterman equation is defined
in (1), (2) and (3). The values for Hi,j, Ei,j and Fi,j are defined as 0
when i < 1 or j < 1.

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

−
−=

−

−

initji

extjiji

GH
GEE

,

,, max
1

1

0
 (1)

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

−
−=

−

−

initji

extjiji

GH
GFF

1

1

0

,

,, max (2)

© Michael Farrar 2008 1

M. S. Farrar

()⎪
⎪
⎭

⎪
⎪
⎬

⎫

⎪
⎪
⎩

⎪
⎪
⎨

⎧

+

=

−− jiji

ji

ji
ji

dqWH
F
E

H

,

max

,

,

,
,

11

0

 (3)

2.2 Striped Smith–Waterman
The Striped Smith–Waterman (Farrar, 2007) is divided into three
major parts. The first part is the generation of the scoring profile
used in the calculations. The next part is the actual calculations
used in computing the local alignment score. Finally the Lazy F
loop, used to correct any errors from the initial calculations.

The layout used by the query profile is a striped access parallel
to the query sequence. The query is divided into p equal length
segments S, where p is equal to the number of elements being
processed in the SIMD register. The length of each segment t
is () ppm 1−+ . If the query is not long enough to completely
fill all the segments, mpt >× then the segments are padded with

null entries that have a weight of zero. Letting be the jj
kS th entry

in the kth segment S where and then vector tj ≤≤1 pk ≤≤1

i
H is defined as i

p
ii SSS ,,, K21 .

The calculation of a match score for is defined

as . Using vectors, the match calculation for
jiH ,

(jiji dqWH ,, +−− 11)

i
H is defined as

ii
WH +

−1
. When , vector 1=i

0
H is

defined as t
p

tt SSS 1210 −,,,, K to carry the values of the last

vector to the first vector. The initial value for
0

F is set to all

zeros. Any errors are corrected in the Lazy F loop.
For most cells, F remains at zero and does not contribute to the

value of H. Only when H is greater than Ginit + Gext will F start to
influence the value of H. The Lazy F loop is executed while any
element of initii

GHF −>
−1

. If then 1=i
0

F is defined

as
t

F shifted right by one element. Shifting the contents of

t
F moves the values in the vector to the next column. H is

corrected by ()
iii

FHH ,max= . The penalty Gext is

subtracted from the vector F and the loop is repeated. If the loop
has iterated t times, the contents of vector F are again shifted one
element to the right and the loop continues at the beginning with

1
H .

2.3 Implementation
When porting the Smith–Waterman (Smith and Waterman, 1981)
algorithm to the Cell B.E. special attention needs to be paid to the
limitations of the SPU. The small size of the LS, 256 KB, will
impact the size of the two sequences compared. With no
instructions supporting saturated math, a solution is needed that
will not greatly impact performance of the inner loop. Finally,
with only support for 16 and 32 bit integer arithmetic, a solution

needs to be found to increase throughput of the Smith–Waterman
calculation.

The Striped (Farrar, 2007) implementation of the Smith–
Waterman algorithm was used when optimizing for the Cell B.E.
This is the fastest of the SIMD implementations and can easily be
adapted to the Cell B.E. instruction set. With some modifications,
the issues concerning space, saturated math and throughput can all
be addressed.

The Striped implementation relies on two buffers for storing the
E and H values and lookup table generated from the scoring matrix
W matching Q for each possible residue. This table greatly
resembles a PSSM (Gribskov et al., 1987). This PSSM is used to
load the weights for a vector with a single instruction. The size of
the PSSM is m×r×s where r is the number of columns in the PSSM
and s is the size of the vector element. For each residue in Q, 50
bytes are needed to store the PSSM.

To free up more space in the LS, the W vector is calculated for
each iteration.. The vector W is generated using the shuffle
instruction (IBM C/C++, 2007). The shuffle instruction reorders
the data of two source registers into a third target register based on
a shuffle mask. Using the query sequence as the shuffle mask and
the scoring matrix as the two source vectors, the W vector is
generated with one shuffle instruction.

This approach greatly increases the available memory for the H
and E arrays. Now each residue in Q needs only six bytes, two
bytes for the query residue and two bytes each for the H and E
values. This implementation divides the available space equally
between the query sequence and database sequence resulting in
ability to handle sequences of 32K residues.

The lack of support in the SPUs for saturated math needs to be
worked around. Saturated math keeps the values of the vector
within the range of the specified type. If an over-flow condition
occurs, the value is clipped to the ceiling of the specified type, i.e.
32,767 for a signed short. If an under-flow condition occurs, the
value is clipped to the floor of the specified type, i.e. -32,768 for a
signed short. Sachdeva et al., (2007) replaced the saturated math
instruction with seven instructions. The saturated math operations
easily dominated the time used to calculate a cell’s values.

An additional way of implementing saturated math is to
artificially limit the range an all vector calculations preventing any
one calculation for under-flowing or over-flowing. Then use the
maximum operator to keep the values within the artificial limits.
This faster method is used in this implementation.

The inputs for a cell’s calculations are limited to Ginit, Gext and
W. By biasing the initial E, F and H values, these calculations
cannot under-flow and maximum operators can take the place of
the expensive saturated math operations. The initial bias is defined
as ()WGGb extinit ,,,min −−= 0 . The values for Hi,j, Ei,j and Fi,j

are defined as b when i < 1 or j < 1. Since the Smith–Waterman
calculations now have a floor of b, the equations (1), (2) and (3)
become (4), (5) and (6) respectively.

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

−
−=

−

−

initji

extjiji

GH
GE

b
E

,

,, max
1

1 (4)

2

Optimizing Smith-Waterman for the Cell Broadband Engine

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

−
−=

−

−

initji

extjiji

GH
GF

b
F

1

1

,

,, max (5)

()⎪
⎪
⎭

⎪
⎪
⎬

⎫

⎪
⎪
⎩

⎪
⎪
⎨

⎧

+

=

−− jiji

ji

ji
ji

dqWH
F
E
b

H

,

max

,

,

,
,

11

 (6)

Saturated addition is not needed in the Smith–Waterman
calculations. If the H value saturates, the calculated scores are
incorrect and need to be recalculated with at a higher precision to
prevent the over-flow. Therefore, the saturated addition can be
replaced with unsaturated addition and a test for the over-flow
condition. The over-flow test is a simple as testing Hi,j for a value
greater than the ceiling. The ceiling c is defined
as , where X is the maximum value for the
specified vector type, i.e. 65,535 for an unsigned short. If any
element of

(WX ,max 0−)

cH
i
≥ , where , the next column has the

potential to over-flow and the calculations need to be restarted
either with a scalar or a higher precision implementation to prevent
the over-flow. To improve calculation times, this test is moved out
of the inner loop and performed once after a column’s calculations
by comparing the maximum score vector to the ceiling. If any
value in the maximum score vector is greater than the ceiling, the
calculations are rerun with a higher precision.

ti ≤≤1

Another modification has been made to the Lazy F loop. This
loop has a check to see if the calculations have reached the last
vector, and need to rollover. If so, the F values are shifted right
and the loop is restarted with the first H element. This check has
been moved out of the Lazy F loop to the end of the loop. This
reduced the number of cycles per iteration by 1/3. For a
moderately sized query sequence with a length of 500 residues, the
number of rollovers is < 1%. For those few cases of rollover, the
loop is repeated at the cost of a branch miss-prediction penalty.

The SPU’s native instruction set support arithmetic operations
on vectors divided into 16 bit and 32 bit elements. This limits the
number of cells processed per vector register to eight. The SSE2
and Altivec instructions also support 8 bit elements in the vector
registers. This allows 16 cells to be processed per vector register,
effectively doubling the number of cells calculated per loop
iteration. The drawback to using 8 bit elements is the range of
scores possible to calculate. An 8 bit element is able to hold a
score between 0-255. If the score is greater than 255, the
calculation needs to be run using a higher precision.

To increase the throughput of this implementation, the scores
are packed in 8 bits. The W vector is arranged with the weights
also in 8 bit elements. The ceiling is calculated for an 8 bit value
by to prevent any over-flows from 8 bits. The
calculations still use the 16-bit arithmetic instructions, but all
comparisons will be using 8-bit instructions. The comparison casts
the vectors to unsigned characters enabling the compiler to
generate the correct instruction for the compare. After each
column is calculated, if

(W,max 0255 −)

cH
i
≥ where the calculations

will continue but with an increased range of 16-bits. Using this
method, each loop iteration will process 16 cells.

ti ≤≤1

3 RESULTS
A multi-threaded test framework was developed to run the Striped
Smith-Waterman (Farrar, 2007) implementations on both an Intel
and Cell B.E. processors. All the Smith-Waterman
implementations were written in C using intrinsic functions for that
processor. The program for the Intel processor was compiled
using GCC 4.1.1 and for the Cell B.E. the XLC 8.2 compiler was
used. By using intrinsic functions instead of assembler, the
compiler was responsible for optimizations, such as register usage,
instruction selection and instruction scheduling.

The programs were tested on three computers. The first was a
Dell blade with two 1.6 GHz Xeon 5130 processors (a total of
eight cores) with 4 GB of RAM. The next computer was an IBM
QS20 blade with two 3.2 GHz Cell B.E. processors (a total of 16
SPEs) and 1 GB of RAM. The last computer was Sony’s
PlayStation 3 (PS3) with a single 3.2 GHz Cell B.E. processor (a
total of 6 SPEs) and 256 MB of RAM. Additionally, the PS3 has a
hypervisor running which controls access to all hardware.

All queries were run against Swiss-Prot release 45 comprising
59,631,787 amino acids in 163,235 sequence entries. To test the
different Smith-Waterman implementations, 11 query sequences
were used ranging is size from 143 to 567 amino acids. These
sequences were used to test other algorithms including BLAST 2
(Altschul et al., 1997), SWMMX (Rognes and Seeberg, 2000) and
SWSSE2 (Farrar, 2007). Two different scoring matrices were used
Blosum50 and Blosum62 (Henikoff and Henikoff, 1992). With
higher scores, the Lazy F loop is executed more often than with
lower scores.

To measure the speed of the Smith-Waterman implementations
on the different processors and not the peripherals, the test frame
work loads the entire sequence database into memory. For this
reason, an older and smaller version of Swiss-Prot was chosen that
would fit into the available memory of the smallest machine. Once

Wozniak Striped
QS20 PS3 QS20 Intel

Sequence Time Speed Time Speed Time Speed Time Speed
P00762 21.2 0.7 9.1 1.6 9.1 1.6 7.7 1.9
P01008 39.6 0.7 14.1 2.0 14.1 2.0 11.5 2.4
P01111 16.4 0.7 7.7 1.5 7.7 1.5 6.7 1.7
P02232 12.4 0.7 6.5 1.3 6.5 1.3 5.8 1.5
P03435 48.4 0.7 16.8 2.0 16.7 2.0 13.8 2.5
P05013 16.4 0.7 7.6 1.5 7.5 1.5 6.5 1.7
P07327 32.1 0.7 12.2 1.8 12.2 1.8 10.1 2.2
P10318 31.4 0.7 11.8 1.8 11.7 1.8 10.7 2.0
P10635 43.0 0.7 15.3 1.9 15.2 1.9 12.6 2.4
P14942 19.2 0.7 8.4 1.6 8.4 1.6 7.2 1.8
P25705 47.7 0.7 16.5 2.0 16.5 2.0 13.9 2.4
Table 1. Single threaded scan times for the using
the Blosum50 scoring matrix with a penalty of 10-
2k. The scan time is in seconds and speed is in
billion cell updates per second.

3

M. S. Farrar

loaded in memory, the database is divided into equal size blocks
for each thread to process. With each block independent of the
other, no thread synchronization is necessary during the
calculations. After the database has been loaded and each thread
has initialized any necessary data, the timer is started. When all
the threads have completed, the timer is stopped. The GCUPS are
calculated by the multiplying the length of the query sequence by
the length of the database divided by the elapsed time.

For the Cell B.E. processors, the elapsed time includes the time
to transfer the sequences from main memory to the LS. To
improve transfer efficiency, the database sequences in main
memory and in the LS are aligned within the cache line and data
structures are initialized during the transfer of the sequence to
improve. Since the transfers take < 1% of the execution time,
more elaborate transfer techniques such as double buffering were
not implemented (IBM Tutorial, 2007).

For a performance baseline, the Sachdeva et al., (2007)
implementation was modified to use the test frame work. Since all

the test sequences are less than 600 residues, this implementation
was modified to handle only query sequences less than 600
residues. This enabled more space to be allocated to the H and F
buffers, increasing the maximum database sequence size from
2,000 residues to 6,500 residues. All sequences in the Swiss-Prot
database longer the maximum allowed length, were truncated.
This reduced the number of residues for the Wozniak tests by
11,840.

Wozniak Striped
QS20 PS3 QS20 Intel

8 Threads 16 Threads 6 Threads 8 Threads 16 Threads 4 Threads 8 Threads
Sequence Time Speed Time Speed Time Speed Time Speed Time Speed Time Speed Time Speed
P00762 2.7 5.5 1.3 11 1.5 9.6 1.1 12.9 0.6 25.6 2.2 6.6 1.1 13.8
P01008 5.0 5.6 2.5 11.1 2.4 11.7 1.8 15.6 0.9 31.2 3.0 9.2 1.6 17.6
P01111 2.1 5.5 1.0 10.9 1.3 8.7 1.0 11.5 0.5 22.5 1.7 6.5 0.9 12.4
P02232 1.6 5.5 0.8 10.9 1.1 7.8 0.8 10.4 0.4 20.7 1.5 5.7 0.8 11.2
P03435 6.1 5.6 3.1 11.1 2.8 12.0 2.1 15.9 1.1 31.4 3.5 9.6 1.8 18.6
P05013 2.1 5.5 1.0 10.9 1.3 8.9 1.0 11.9 0.5 23.7 1.6 6.8 0.9 12.9
P07327 4.0 5.5 2.0 11 2.0 10.9 1.5 14.5 0.8 28.6 2.6 8.7 1.3 16.8
P10318 3.9 5.5 2.0 10.9 2.0 10.9 1.5 14.6 0.7 28.9 2.7 8.1 1.3 16.7
P10635 5.4 5.5 2.7 10.9 2.6 11.4 1.9 15.3 1.0 29.9 3.3 9.1 1.8 16.9
P14942 2.4 5.5 1.2 11 1.4 9.4 1.1 12.5 0.5 24.9 1.8 7.2 1.0 13.2
P25705 6.0 5.5 3.0 11 2.8 11.9 2.1 15.7 1.1 30.9 3.6 9.2 1.8 18.2
Table 2. Multi threaded scan times using Blosum50 scoring matrix with a penalty of 10-2k. The scan time is in
seconds and speed is in billion cell updates per second.

The first test runs the eleven searches against the database using
a single thread, Table 1. The scoring matrix used was Blosum50
with a gap penalty of 10-2k. Comparing the times of the PS3 to
the QS20 would indicate that the hypervisor has a minimal impact
on the execution of the calculations. By increasing the number of
cells processed per SIMD register and decreasing the number of
instructions in the inner loop, the Striped implementation executed
2-3 times faster than the Wozniak. Another point of interest is the
X86 times compared to the Cell B.E. Even though the Intel
processor has a much lower clock speed, 1.6 GHz vs. 3.2 GHz, its

Wozniak Striped
QS20 PS3 QS20 Intel

8 Threads 16 Threads 6 Threads 8 Threads 16 Threads 4 Threads 8 Threads
Sequence Time Speed Time Speed Time Speed Time Speed Time Speed Time Speed Time Speed
P00762 2.7 5.5 1.3 11 1.4 10.4 1.1 13.9 0.5 27.6 1.8 7.9 0.9 17.2
P01008 5.0 5.6 2.5 11.1 2.2 12.4 1.7 16.6 0.8 33.1 2.6 10.5 1.3 20.5
P01111 2.1 5.5 1.0 10.9 1.2 9.6 0.9 12.7 0.5 24.9 1.3 8.5 0.7 16.3
P02232 1.6 5.5 0.8 10.9 1.0 8.7 0.7 11.6 0.4 23.2 1.1 7.6 0.6 15.3
P03435 6.1 5.6 3.1 11.1 2.7 12.6 2.0 16.7 1.0 33.0 3.1 11.0 1.6 20.9
P05013 2.1 5.5 1.0 10.9 1.2 9.7 0.9 12.9 0.4 25.8 1.3 8.8 0.7 16.7
P07327 4.0 5.5 2.0 11 1.9 11.6 1.4 15.5 0.7 30.7 2.2 10.3 1.1 20.1
P10318 3.9 5.5 2.0 10.9 1.9 11.6 1.4 15.5 0.7 30.7 2.3 9.3 1.1 19.8
P10635 5.4 5.5 2.7 10.9 2.4 12.1 1.8 16.2 0.9 31.8 2.9 10.1 1.5 19.2
P14942 2.4 5.5 1.2 10.9 1.3 10.3 1.0 13.7 0.5 27.3 1.4 9.3 0.8 16.2
P25705 6.0 5.5 3.0 11 2.6 12.5 2.0 16.7 1.0 32.7 3.1 10.7 1.6 20.8
Table 3. Multi threaded scan times using Blosum62 scoring matrix with a penalty of 10-2k. The scan time is in
seconds and speed is in billion cell updates per second.

4

Optimizing Smith-Waterman for the Cell Broadband Engine

calculation times were 20% faster. This can be attributed to
differences in the SIMD instructions. Intel’s SSE2 instructions
support saturated math and a maximum instruction. This leads to
the inner loop of the Intel having eight fewer SIMD instructions
than the Cell B.E.

The final two searches used the Blosum50 and Blosum62
scoring matrices Table 2 and Table 3 respectively, with a gap
penalty of 10-2k to test the full capability of the different
configurations. The searches were run using all the cores of a
single socket and dual sockets configurations. The PS3 using six
SPEs peaked at speeds >12 GCUPS. The QS20 using a single Cell
B.E. and two Cell B.E. reached speeds >16 and >33 GCUPS
respectively. Finally the Intel using four and then eight cores
reached speeds >11 and >20 GCUPS respectively.

4 DISCUSSION
Further optimizations of the Striped Smith-Waterman
implementation on the Cell B.E. processors are still possible.
Unrolling the inner loop would allow the compiler more freedom
in scheduling instruction thus reducing the number of data
dependency stalls. Another optimization would be to remove the
updating of E in the Lazy F loop when an insert cannot
immediately follow a delete (Durbin et al., 1998). Attention must
be taken as to not introduce additional branches miss-prediction
penalties which could easily out strip any performance gains.

Other bioinformatics applications which make use of the
dynamic programming algorithm could benefit from Cell B.E.
eight SPEs such as ClustalW (Thompson et al., 1994), SSEARCH
(Pearson and Lipman, 1988) and HMMER (Eddy, 1999). Each of
these programs would pose unique problems when ported to the
Cell B.E. Additionally, the slow speed of the PPC core will
require more routines be ported to the SPU or offloaded to a faster
processor.

Additionally, the divide and conquer algorithms used in
bioinformatics could also benefit from the multiple SPUs of the
Cell B.E. One example would be the Myers and Miller (1988)
linear space alignment algorithm. As the problem is sub-divided,
keep assigning an SPU a portion of the work until all available
resources are used. A multi-threaded implementation of this
algorithm has improved the progressive alignment times of
ClustalW (Chaichoompu el at., 2006).

ACKNOWLEDGEMENTS
The author acknowledges Georgia Institute of Technology, its
Sony-Toshiba-IBM Center of Competence, and the National
Science Foundation, for the use of Cell Broadband Engine
resources that have contributed to this research.

REFERENCES
Benson, D. A., Karsch-Mizrachi, I., Lipman, D. J., Ostell, J., Rapp, B. A. and

Wheeler, D.L. (2000). Genbank. Nucleic Acids Res., 28, 15-18.
Chaichoompu, K., Kittitornkun, S. and Tongsima, S. (2006) MT-ClustalW:

Multithreading Multiple Sequence Alignment. In Proceedings of the 20th IEEE
International Parallel and Distributed processing Symposium: Rhodes Island,
Greece, April 25-29, 2006. http://www.hicomb.org/HiCOMB2006-07.pdf.
Accessed 2008 April 16.

Durbin, R., Eddy, S., Krogh, A., and Mitchison, A. (1998) Biological Sequence
Analysis: Probabilistic Models of Proteins and Nucleic Acids. Cambridge
University Press, Cambridge, UK, 29-30.

Eddy, S. (1999) Profile hidden Markov models. Bioinformatics, 14, 755-763.
Farrar, M. (2007) Striped Smith-Waterman speeds database searches six times over

other simd implementations. Bioinformatics, 23, 156-161.
Gotoh, O. (1982) An improved algorithm for matching biological sequences. J. Mol.

Biol., 162, 705-708.
Gribskov, M., McLachlan, A. D. and Eisenberg D. (1987) Profile analysis: Detection

of distantly related proteins. Proc. Natl. Acad. Sci. USA, 84, 4355-4358.
Henikoff, S., and Henikoff, J. G. (1992) Amino acid substitution matrices from

protein blocks. Proc. Natl. Acad. Sci. USA, 89, 10915-10919.
IBM (2007) Cell Broadband Engine Programming Handbook. http://www-

01.ibm.com/chips/techlib/techlib.nsf/techdocs/9F820A5FFA3ECE8C8725716A00
62585F/$file/CBE_Handbook_v1.1_24APR2007_pub.pdf. Accessed 2008 April
15.

IBM (2007) Cell Broadband Engine Programming Tutorial. http://www-
01.ibm.com/chips/techlib/techlib.nsf/techdocs/FC857AE550F7EB83872571A800
61F788/$file/CBE_Programming_Tutorial_v3.0.pdf. Accessed 2008 April 15.

IBM (2007) C/C++ Language Extensions for Cell Broadband Engine Architecture.
http://www-
01.ibm.com/chips/techlib/techlib.nsf/techdocs/30B3520C93F437AB87257060006
FFE5E/$file/Language_Extensions_for_CBEA_2.5.pdf. Accessed 2008 April 15.

Myers, E. and Miller, W. (1988) Optimal alignments in linear space. Comput. Appl.
Biosci., 4, 11–17.

Pearson, W. R. and Lipman, D. J. (1988) Improved tools for biological sequence
comparison. Proc. Natl. Acad. Sci. USA, 85, 2444-2448.

Rognes, T. and Seeberg, E. (2000) Six-fold speed-up of Smith-Waterman sequence
database searches using parallel processing on common microprocessors.
Bioinformatics, 16, 699-706.

Smith, T. F. and Waterman, M. S. (1981) Identification of common molecular
subsequencees. J. Mol. Biol., 147, 195-197.

Thompson, J. D., Higgins, D. G. and Gibson, T. J. (1994) CLUSTALW: improving
the sensitivity of progressive multiple sequence alignment through sequence
weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids
Res., 22, 4673–4680.

Sachdeva, V., Kistler, M., Speight, E. and Tzeng, T. K. (2007) Exploring the Viability
of the Cell Broadband Engine for Bioinformatics Applications. In Proceedings of
the 21st IEEE International Parallel and Distributed processing Symposium: Long
Beach, California, March 26-30, 2007.
http://www.hicomb.org/HiCOMB2007/proceedings.html. Accessed 2008 Mar 20.

Wozniak, A. (1997) Using video-oriented instructions to speed up sequence
comparison. Comput. Appl. Biosci., 13, 145-150.

5

	1 INTRODUCTION
	2 METHODS
	2.1 Smith–Waterman
	2.2 Striped Smith –Waterman
	2.3 Implementation
	3 RESULTS
	4 DISCUSSION

